This hypothetical example shows how a partially automated car wash can improve service times and its bottom
line by replacing postwash cloth drying with automated blow drying. Currently the singlequeue car wash
station has an automatic washrinsewax cycle, after which employees manually clothdry each vehicle as it
emerges from the station.
Management believes that they can significantly shorten service times, reduce waiting lines and improve
their bottom line by adding an automatic blowdryer to the end of the cleaning cycle. Here is the current
setup, before adding the automatic drying unit:
The current setup can be represented by a M/G/1 queueing model that has a Poisson distribution for customer
arrival rates, a corresponding exponential distribution for interarrival times, and a general probability
distribution for service times. [Note: if you are not already familiar with Kendall Notation for queueing
models, then before continuing you should read our introductory queueing
optimization page.]
The service rate has a general probability distribution because there is little variation in the automatic
portion of the cleaning cycle: some customers may want more or less expensive cleaning options ("Bronze," "Silver"
and "Gold" service packages); but the total time required for each cleaning package varies little. The
handdrying portion of the cleaning cycle also follows a general probability distribution because there is not much
variation in the time required to clothdry different vehicles.
In the table above, the numbers highlighted in yellow can change as a function of changes in the
grayhighlighted values above them. Here is the result of switching from cloth drying to automatic drying,
shown next to the original model for comparison:
We have shifted from a clothdrying M/G/1 queueing model to an automateddrying M/D/1
model. This new model still has exponentially distributed interarrival times, but it now has a deterministic
servicetime probability distribution because the fully automated cleaning cycle has a servicetime standard
deviation of zero. This is because the blowdrying time required for a waxed car is less than for an unwaxed
car, and the mechanical drying unit automatically adjusts drying time so that total cleaning time remains constant
irrespective of which cleaning options the customer has selected.
From the above table we can see that average time spent waiting in line for a car wash has been slashed by more
than 2/3, from 9.62 to 3.13 minutes; service times have been reduced; and total time in the system has been
reduced my more than half, from 14.23 minutes to 6.88 minutes. In addition, the shorter service time allows
the system to service three more vehicles per hour.
Theoretically, this increased throughput and the shorter queues should attract more customers per hour when they
see that the car wash is less crowded and waiting times have decreased significantly. So we can build a
third model that resets the time spent in queue back up to its original value of 9.62 as an upper limit, and then
recalculate the customer arrival rate. Here is the result:
From the table above we can see that the customer arrival rate could increase from 10 to 13.39 vehicles per
hour, leading to an 84% system utilization rate. In reality, we may not always see a customer arrival rate of
13.39 cars per hour. But we know that we now have the capability to handle higher peak volumes of traffic
when they occur; and we have reduced the cost of labor by automating the drying cycle. The automatic drying
unit should pay for itself fairly quickly.
Back to the main Queueing Optimization page.
